Rational Self-affine Tiles

نویسندگان

  • WOLFGANG STEINER
  • J. M. THUSWALDNER
چکیده

An integral self-affine tile is the solution of a set equation AT = ⋃d∈D(T +d), where A is an n× n integer matrix and D is a finite subset of Z. In the recent decades, these objects and the induced tilings have been studied systematically. We extend this theory to matrices A ∈ Qn×n. We define rational self-affine tiles as compact subsets of the open subring R ×∏pKp of the adèle ring AK , where the factors of the (finite) product are certain p-adic completions of a number field K that is defined in terms of the characteristic polynomial of A. Employing methods from classical algebraic number theory, Fourier analysis in number fields, and results on zero sets of transfer operators, we establish a general tiling theorem for these tiles. We also associate a second kind of tiles with a rational matrix. These tiles are defined as the intersection of a (translation of a) rational self-affine tile with R ×∏p{0} ' R. Although these intersection tiles have a complicated structure and are no longer self-affine, we are able to prove a tiling theorem for these tiles as well. For particular choices of digit sets, intersection tiles are instances of tiles defined in terms of shift radix systems and canonical number systems. Therefore, we gain new results for tilings associated with numeration systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractal tiles associated with shift radix systems☆

Shift radix systems form a collection of dynamical systems depending on a parameter r which varies in the d-dimensional real vector space. They generalize well-known numeration systems such as beta-expansions, expansions with respect to rational bases, and canonical number systems. Beta-numeration and canonical number systems are known to be intimately related to fractal shapes, such as the cla...

متن کامل

Self-Affine Tiles in Rn

A self-affine tile in R is a set T of positive measure with A(T) = d ∈ $ < (T + d), where A is an expanding n × n real matrix with det (A) = m on integer, and $ = {d 1 ,d 2 , . . . , d m } ⊆ R is a set of m digits. It is known that self-affine tiles always give tilings of R by translation. This paper extends the known characterization of digit sets $ yielding self-affine tiles. It proves seve...

متن کامل

A Survey on Topological Properties of Tiles Related to Number Systems

In the present paper we give an overview of topological properties of self-affine tiles. After reviewing some basic results on self-affine tiles and their boundary we give criteria for their local connectivity and connectivity. Furthermore, we study the connectivity of the interior of a family of tiles associated to quadratic number systems and give results on their fundamental group. If a self...

متن کامل

On Disk-like Self-affine Tiles Arising from Polyominoes

In this paper we study a class of plane self-affine lattice tiles that are defined using polyominoes. In particular, we characterize which of these tiles are homeomorphic to a closed disk. It turns out that their topological structure depends very sensitively on their defining parameters. In order to achieve our results we use an algorithm of Scheicher and the second author which allows to dete...

متن کامل

Boundary Parametrization of Planar Self-affine Tiles with Collinear Digit Set

We consider a class of planar self-affine tiles T generated by an expanding integral matrix M and a collinear digit set D as follows :

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012